## Mark scheme - Simple Circuits (F)



|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |


|  |  |  |  |  | candidates rearranged the equation before substitution and others after. Fewer candidates were able to round 10120000 J to two significant figures (e.g. 10000000 J ). <br> OCR support <br> Mathematical Skills Handbook http:/www.ocr.org.uk/Images/310651-mathematical-skills-handbook.pdf |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Total | 8 |  |
| 10 | a | i | variable resistor $\checkmark$ | $\begin{gathered} 1 \\ (A O 1.2) \end{gathered}$ | ALLOW rheostat <br> IGNORE potentiometer <br> Examiner's Comments <br> Q22 is an overlap question with J249/03. <br> Very few candidates recognised that this was a variable resistor. Many thought it was a thermistor. |
|  |  | ii | Control / change / vary / increase / decrease / AW the resistance / current in the circuit $\checkmark$ | $\begin{gathered} 1 \\ (A O 1.2) \end{gathered}$ | DO NOT ALLOW merely 'changes the voltage or changes p.d.' <br> BUT ALLOW: changes the potential difference or voltage across (component) $\mathbf{X}$ $\checkmark$ <br> Examiner's Comments <br> Candidates who misidentified the variable resistor in Q22(a)(i) were not able to answer this question. |
|  | b | i | (filament) bulb / lamp $\checkmark$ | $\begin{gathered} 1 \\ (\mathrm{AOB} .2 \mathrm{a}) \end{gathered}$ | Examiner's Comments <br> More able candidates were able to recognise the response of a filament lamp. |
|  |  | ii | gradient / slope (of graph) changes (as potential difference / voltage changes) $\checkmark$ <br> idea of increasing resistance (with more p.d.) / ORA $\checkmark$ <br> idea of increasing temperature / AW $\checkmark$ | $\begin{gathered} 3 \\ (\mathrm{AO} 3.1 \mathrm{a}) \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 2.2) \end{gathered}$ | ALLOW 'graph / line / slope levels off' $\downarrow$ <br> ] <br> Resistance increases with greater temperature $\checkmark \checkmark$ <br> Examiner's Comments <br> This overlap question was challenging for most candidates. Most stated 'as p.d. increases, current increases' which does not address the fact that the $\mathrm{V} / \mathrm{I}$ ratio is |


|  |  |  |  | increasing, due to the graph curving downwards, so $R$ must be increasing also. |
| :---: | :---: | :---: | :---: | :---: |
|  | C | FIRST CHECK THE ANSWER ON ANSWER LINE <br> If answer = 4 (V) award 2 marks $0.25 \times 16 \checkmark$ $4(V) \checkmark$ | $\begin{gathered} 2 \\ (\mathrm{AO} 2.1) \\ (\mathrm{AO} 2.1) \end{gathered}$ | Examiner's Comments <br> Most candidates were successfully completed the calculation. |
|  |  | FIRST CHECK THE ANSWER ON ANSWER LINE <br> If answer = $1(\mathrm{~W})$ award 3 marks $\begin{aligned} & P=I V \checkmark \\ & P=0.25 \times 4 \checkmark \\ & P=1(W) \checkmark \end{aligned}$ <br> OR $\begin{aligned} & \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \checkmark \\ & \mathrm{P}=0.25^{2} \times 16 \checkmark \\ & \mathrm{P}=1(\mathrm{~W}) \checkmark \end{aligned}$ | $\begin{gathered} 3 \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 2.1) \\ (\mathrm{AO} 2.1) \end{gathered}$ | ALLOW e.c.f. from part ci <br> Examiner's Comments <br> A quarter of all candidates calculated the correct answer here. Very few of the other candidates recognised that (c)(i) and (c)(ii) were a developing story and so did not multiply the answer to the first part of the question $(4 \mathrm{~V})$ by 0.25 A to calculate the answer to the second part. |
|  |  | Total | 11 |  |
| 11 | i | FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $2.8(\mathrm{~kW})$ award 4 marks $(P=) I^{2} \times R \checkmark$ <br> $11 \times 11 \times 23$ or $112 \times 23$ or $121 \times 23 \checkmark$ $=2783 \checkmark$ <br> Conversion to kW $=2.8(\mathrm{~kW}) \checkmark$ | $\begin{gathered} 4 \\ \text { (AO 1.2) } \\ \text { (AO 2.1) } \\ \text { (AO 2.1) } \\ \text { (AO 2.1) } \end{gathered}$ | ALLOW 2.78 kW or $2.783 \mathrm{~kW} \checkmark \checkmark \checkmark \checkmark$ <br> ALLOW equation in any form <br> ALLOW ecf candidates answer to $3^{\text {rd }}$ marking point converted to kW <br> Examiner's Comments <br> Q23 is an overlap question with J249/04 and candidates found it very challenging with only a small number of the most able candidates being credited with any marks. From the stem of the question candidates knew that their answer needed to be between 1.0 kW and 3.0 kW . There were compensatory marks available where candidates wrote down the equation they were using and the different stages of their calculations. The most common workings |





|  |  | $\mathrm{I}=0.28(\mathrm{~A}) \checkmark$ | (A1.2) | marks <br> ALLOW one mark for any calculated answer to 2sf <br> Examiner's Comments <br> In their response to this question candidates earned a marks for the correct rearrangement of the given equation, a mark for substitution of the appropriate values, a mark for evaluation, and a mark for expressing the evaluated result to 2 significant figures. <br> Error-carried-forward applied here, as shown in Exemplar 9. The first mark was earned by the power/p.d. quotient; it would have been cleared if they had included a subject to make it into a clear equation). There was no obvious logic to their other workings, but the final expression written is $65 / 4.5=14.4444$ which (expressed to 2 s.f.) is 14 , so earned second mark was given. <br> Examiners are expected to mark positively and although the candidate has not set their workings out sensibly the examiner has assumed 65/4.5 and 14 to be the candidate's final decision. <br> Exemplar 9 <br> (a) Calculate the current in the TV when it is tumed on. Use the equation: power $=$ polential difference $\times$ current <br>  <br> bs 230 <br> $\frac{230}{30}=0.5$ <br> $\frac{65}{4.5}$ <br> Curnote 14 |
| :---: | :---: | :---: | :---: | :---: |
| b | b | FIRST CHECK THE ANSWER ON ANSWER LINE <br> If answer = 117000 (or 116000) (J) award 4 marks | 4 | ALLOW ECF from (a) |


|  |  | $\begin{aligned} & E=P \times t \checkmark \\ & \text { Unit conversion } 30 \text { minutes }=1800 \text { seconds } \\ & \checkmark \\ & E=65 \times 1800 \checkmark \\ & E=117000(J) \checkmark \end{aligned}$ | (A1.2) <br> (A1.2) <br> (A2.1) <br> (A2.1) | $E=Q \times V \text { or } 1 \times t \times V$ $E=0.28 \times 1800 \times 230$ <br> ALLOW ECF for incorrect time conversion <br> ALLOW three marks for 1950 (J) $E=116000(\mathrm{~J}) \checkmark$ <br> Examiner's Comments <br> This calculation, the last on the paper, required recall of the energy/power/time relationship and conversion of minutes to seconds, resulting in a large value answer. One candidate did calculate 117000 J correctly and then wrote 'Wrong!' next to it: However, the examiner ignored this comment and the candidate was credited with full marks for the question. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 8 |  |
| 14 |  | As speed increases, (thinking) distance increases / ORA $\checkmark$ <br> BUT <br> (thinking) distance is (directly) proportional to speed / as speed doubles, (thinking) distance doubles / linear relationship through the origin $\checkmark$ | $\begin{gathered} 2(\mathrm{AO} \\ 3.1 \mathrm{a})(\mathrm{AO} \\ 3.2 \mathrm{~b}) \end{gathered}$ | ALLOW numerical values from graph, e.g. at $15(\mathrm{~m} / \mathrm{s})$, $\mathrm{td}=10 \mathrm{~m}$ but at $30(\mathrm{~m} / \mathrm{s}) \mathrm{td}=$ 20(m). <br> ALLOW numerical values from graph, e.g. at $15(\mathrm{~m} / \mathrm{s})$, td $=10(\mathrm{~m})$ but at $30(\mathrm{~m} / \mathrm{s})$ td $=$ $2 \times 10=20(\mathrm{~m})$ for 2 marks <br> Examiner's Comments <br> Most candidates stated that the thinking distance increased with increasing speed. <br> Few candidates stated that the thinking distance was directly proportional to the speed. <br> The question does indicate that candidates should use data from the graph. In this case, candidates could easily see that the thinking distance line is a straight line through the origin. Alternatively, they could have read the thinking distance at a speed of $15 \mathrm{~m} / \mathrm{s}$ and $30 \mathrm{~m} / \mathrm{s}$ to see that the thinking distances are 10 m and 20 m . This means that as the speed doubles the thinking distance doubles. |

### 3.2 Simple Circuits (F)

|  |  |  |  | Understand how to test from a graph whether two quantities are directly proportional. <br> 1. Take a quantity on the $x$-axis and double it and read off the $y$-axis values and see whether they double as well <br> 2. See whether there is a straight line through the origin. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 2 |  |
| 15 | a i | Correct symbol for a voltmeter $\checkmark$ <br> Voltmeter is in parallel with the lamp $\checkmark$ | $\begin{gathered} 2 \\ (\mathrm{AO} 1.1) \\ (\mathrm{AO} 2.2) \end{gathered}$ | ALLOW voltmeter in parallel with lamp and ammeter |
|  |  | Mistake: Units for current are missing $\checkmark$ Correction: Add A/amps/amperes/mA (for the unit) $\checkmark$ <br> Mistake: Current is not recorded to correct number of decimal places / 1d.p. <br> Correction: Current should be recorded to 1 d.p.11.0A $\checkmark$ | 4 $(\mathrm{AO} 3.2 a)$ (AO3.2b) (AO3.2a) (AO3.2b) | ALLOW Current at 1.0 V is recorded to 4 significant figures <br> ALLOW current should be recorded to 2 sig figs |
|  |  | FIRST CHECK THE ANSWER ON ANSWER LINE <br> If answer = $1.25(\Omega)$ award 3 marks Rearrange to give resistance = potential difference $\div$ current $\sqrt{ }$ $4(.0) \div 3.2 \checkmark$ $=1.25(\Omega) \checkmark$ | 3 <br> (AO1.2) <br> (AO2.1) <br> (AO2.1) | ALLOW $1.3(\Omega) \checkmark \checkmark \checkmark$ $(\text { ALLOW } R)=V \div 1$ <br> Choice of $V$, I for wrong data point loses this mark but can get mp1 for equation and mp3 for evaluation ecf. <br> Mp3 may depend on units chosen for current in (ii). |
|  | b | Point 1,1 correctly plotted within $1 / 2$ small square $\checkmark$ <br> Suitable curved line of best-fit drawn $\checkmark$ | $\begin{gathered} 2 \\ (\mathrm{AO} 2.2 \mathrm{x} \end{gathered}$ <br> 2) | Should be within 1 small square of each point. <br> May not be extrapolated to $(0,0$, ) |
|  |  | Current increases as potential difference increases/AW $\checkmark$ <br> Rate of increase reduces/current increases more slowly with potential difference/AW $\checkmark$ | $\begin{gathered} 2 \\ (\mathrm{AO} 3.1 \mathrm{a}) \\ (\mathrm{AO} 3.1 \mathrm{a}) \end{gathered}$ | IGNORE it is a straight line <br> ALLOW (they are) not proportional / not linear <br> ALLOW resistance increases as current goes up/filament gets hotter |

### 3.2 Simple Circuits (F)

|  | iii | Change lamp for a (fixed) resistor $\checkmark$ <br> Measure current for different potential differences/AW $\checkmark$ | $\begin{gathered} 2 \\ (\mathrm{AO} 1.2 \mathrm{x} \end{gathered}$ <br> 2) | ALLOW repeat the experiment |
| :---: | :---: | :---: | :---: | :---: |
|  | iv | Straight line (through the origin)/ current is (directly) proportional to voltage $\checkmark$ <br> Resistance is constant./not changing/ fixed $\sqrt{ }$ | $\begin{gathered} 2 \\ (\mathrm{AO} 1.2 \mathrm{x} \end{gathered}$ <br> 2) | ALLOW obeys Ohm's Law |
|  |  | Total | 17 |  |
| 16 |  | Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. <br> Level 3 (5-6 marks) <br> Circuit A identified as a parallel circuit and having the brightest lamps <br> AND <br> Detailed explanation of why $A$ has the brightest lamps <br> AND <br> Identification of control variables <br> There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. <br> Level 2 (3-4 marks) <br> Circuit A identified as a parallel circuit and having the brightest lamps <br> AND <br> An explanation of why $A$ has the brightest lamps <br> OR <br> Identification of control variables <br> There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. <br> Level 1 (1-2 marks) <br> Circuit A identified as having the brightest lamps. <br> OR Identification that circuit A is in parallel. <br> OR <br> Identification of control variables <br> There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. <br> 0 marks <br> No response or no response worthy of credit. | $\begin{gathered} 6 \\ (\mathrm{AO} 1.2 \mathrm{x} \\ 2) \\ (\mathrm{AO} 2.2 \mathrm{x} \\ 2) \\ (\mathrm{AO} 3.2 \mathrm{~b} x \\ 1) \\ (\mathrm{AO} 3.3 \mathrm{a} \mathrm{x} \\ 1) \end{gathered}$ | AO1.2 Demonstrate knowledge and understanding of series and parallel circuits <br> For example: <br> - circuit $A$ is parallel <br> - circuit $B$ is series <br> - both circuits have one cell <br> AO2.2 Apply knowledge and understanding of series and parallel circuits <br> For example: <br> - resistance is lower in circuit A / ORA <br> - more current flows in circuit A / ORA <br> AO3.2b Analyse information and ideas to draw conclusions <br> For example: <br> - lamps in circuit A are brighter / ORA <br> AO3.3a Analyse information to develop experimental procedure by identifying control variables <br> - same (number of) lamps <br> - same (number of) cells |


|  |  |  | Total | 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17 |  |  | FIRST CHECK THE ANSWER ON ANSWER LINE <br> If answer $=5(.00)(\mathrm{C})$ award 3 marks <br> (Rearrange equation) Charge = energy transferred / potential difference $\checkmark$ <br> (charge =) $200 / 40 \checkmark$ $=5(C) \checkmark$ | $\begin{gathered} 3 \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 2.1) \\ (\mathrm{AO} 2.1) \end{gathered}$ |  |
|  |  |  | Total | 3 |  |

